Synthesis and reactivity of acetylacetonato- C^{γ} complexes of $\mathrm{M}^{\text {II }}$ ($\mathrm{M}=\mathrm{Pd}$ or Pt): X-ray crystal structure of $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{OOCPh})(\right.$ bipy $\left.)\right] \cdot \mathrm{CHCl}_{3}$

Juan Forniés *, Francisco Martínez, Rafael Navarro, Esteban P. Urriolabeitia
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza, Consejo Superior de Investigaciónes Científicas, 50009 Zaragoza, Spain

Received 13 December 1994

Abstract

Acetylacetonato- C^{γ} complexes of stoichiometry $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)\left(\mathrm{acac}-\mathrm{C}^{\gamma}\right)(\mathrm{N}-\mathrm{N})\right](\mathrm{M}=\mathrm{Pd} ; \mathrm{X}=\mathrm{F}$ or $\mathrm{Cl} ; \mathrm{N}-\mathrm{N}=1,10$-phenanthroline or $2,2^{\prime}$-bipyridine) ($\mathrm{M}=\mathrm{Pt} ; \mathrm{X}=\mathrm{F} ; \mathrm{N}-\mathrm{N}=1,10$-phenanthroline (phen), or $2,2^{\prime}$-bipyridine (bipy)) have been obtained by treatment of the acetylacetonato- O, O^{\prime} complexes $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)\left(\right.\right.$ acac $\left.-O, O^{\prime}\right)($ tht $\left.)\right](\mathrm{tht}=$ tetrahydrothiophene) with the corresponding $\mathrm{N}-\mathrm{N}$ base in $1 / 1$ molar ratio. Complexes $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-\mathrm{C}^{\gamma}\right)(\mathrm{phen})\right](1)$ and $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-\mathrm{C}^{\gamma}\right)(\mathrm{bipy})\right]$ (2) react with organic substrates containing acidic hydrogen atoms [HR], yielding the corresponding complexes $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{R})(\mathrm{N}-\mathrm{N})\right]\left(\mathrm{R}=\mathrm{CF}_{3} \mathrm{COO}, \mathrm{CH}_{3} \mathrm{COO}, \mathrm{PhCOO}, \mathrm{PhS}\right.$ or $\left.\mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}\right)$. However, the reaction of 2 with HPPh_{2} affords the dinuclear phosphido-bridged complex [$\left.\left\{\mathrm{Pd}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{HPPh}_{2}\right)\right\}_{2}\right]$. All complexes have been characterized by spectroscopic methods (IR and ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\} \mathrm{NMR}$) and the molecular structure of $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{OOCPh})(\right.$ bipy $\left.)\right] \cdot \mathrm{CHCl}_{3}(12)$ has been determined by X-ray diffraction methods.

Keywords: Palladium; Platinum; Acetylacetonate- C^{γ} complexes; Pentafluorophenyl; Pentachlorophenyl; Carboxylate

1. Introduction

Acetylacetonato complexes in which this ligand is O, O^{\prime}-chelating coordinated have been widely studied [1] because of their applications as reagents for NMR spectroscopy, vapour-phase chromatography, solvent extraction techniques etc. However, in spite of the extensive work, the chemistry of the acetylacetonato- C^{γ} derivatives, in which the acac group is σ bonded to the metal centre through the C^{γ} atom, has received much less attention [1,2].

During our work on the synthesis of perhalophenyl complexes of $\mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$ with polyfunctional ligands such as $\left[\mathrm{Ph}_{2} \mathrm{P}-\mathrm{CH}-\mathrm{PPh}_{2}\right]^{-}$, $\left[\mathrm{C}\left(\mathrm{PPh}_{2}\right)_{3}\right]^{-}$and [$\left.\mathrm{SPPh}_{2}\right]^{-}$, acetylacetonato- O, O^{\prime} complexes were very useful starting materials [3]. As an extension of the chemistry of $\mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$ with the acetylacetonate ligand, we describe here the synthesis of some new M -acac- C^{γ} complexes ($\mathrm{M}=\mathrm{Pd}$ or Pt) and the reactivity of two palladium derivatives towards organic sub-

[^0]strates containing acidic hydrogen atoms, as RCOOH , $\mathrm{RSH}, \mathrm{HP}(\mathrm{S}) \mathrm{Ph}_{2}$ and HPPh_{2}. These displace the acac group as Hacac with coordination of the anionic fragment $\mathrm{RCOO}^{-}, \mathrm{RS}^{-},\left[\mathrm{SPPh}_{2}\right]^{-}$and $\left[\mathrm{PPh}_{2}\right]^{-}$.

2. Results and discussion

2.1. Acetylacetonato- ${ }^{\gamma}$ complexes of $\operatorname{Pd}(I I)$ and $\operatorname{Pt}(I I)$

The reaction between $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)\left(\mathrm{acac}-O, O^{\prime}\right)(\mathrm{tht})\right.$] $(\mathrm{M}=\mathrm{Pd}, \mathrm{X}=\mathrm{F}$ or Cl$)(\mathrm{M}=\mathrm{Pt} ; \mathrm{X}=\mathrm{F})$ and the bidentate basis ligands $\mathrm{N}-\mathrm{N}(\mathrm{N}-\mathrm{N}=1,10$-phenanthroline (phen) or $2,2^{\prime}$-bipyridine (bipy)) in $1 / 1$ molar ratio causes the displacement of the tht and the isomerization of the acac O, O^{\prime} into the C^{γ}-coordinated form, affording the neutral derivatives $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)\left(\mathrm{acac}-\mathrm{C}^{\gamma}\right)(\mathrm{N}-\mathrm{N})\right]$:

$$
\begin{align*}
& {\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)\left(\mathrm{acac}-O, O^{\prime}\right)(\text { tht })\right]+\mathrm{N}-\mathrm{N}} \\
& \longrightarrow\left[M\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)\left(\mathrm{acac}-\mathrm{C}^{\boldsymbol{\gamma}}\right)(\mathrm{N}-\mathrm{N})\right]+\text { tht } \tag{1}\\
& \mathrm{M}=\mathrm{Pd}, \quad \mathrm{X}=\mathrm{F}, \quad \mathrm{~N}-\mathrm{N}=\text { phen (1) or bipy (2) } \\
& \mathrm{M}=\mathrm{Pd}, \quad \mathrm{X}=\mathrm{Cl}, \quad \mathrm{~N}-\mathrm{N}=\text { phen (3) or bipy (4) } \\
& \mathrm{M}=\mathrm{Pt}, \quad \mathrm{X}=\mathrm{F}, \quad \mathrm{~N}-\mathrm{N}=\text { phen (5) or bipy (6) }
\end{align*}
$$

The process takes place in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for the Pd complexes and in refluxing benzene for the platinum complexes.

Complexes 1-6 have satisfactory elemental analysis and their IR spectra (see Section 4) show the following characteristic absorptions:
(a) for all complexes, a very strong absorption in the $1690-1670 \mathrm{~cm}^{-1}$ region together with a second absorption (less intense) around $1630 \mathrm{~cm}^{-1}$ indicate the C^{γ} coordination mode of the acac group [4]. Moreover, the disappearance of the in-plane and out-of-plane bending mode $\pi(\mathrm{C}-\mathrm{H})$ at around $800 \mathrm{~cm}^{-1}$ in the acac- O, O^{\prime} compounds confirms the C^{γ} coordination [5].
(b) Absorptions in the $1500,1060,950$ and 790 (X -sensitive) cm^{-1} regions show the presence of coordinated pentafluorophenyl groups [6] and absorptions in the $1350-1280 \mathrm{~cm}^{-1}$ region and around 830 and 670 cm^{-1} indicate coordinated $\mathrm{C}_{6} \mathrm{Cl}_{5}$ ligands [7].
(c) Finally, characteristic absorptions of the $N, N-$ chelating coordinated 1,10 -phenanthroline and $2,2^{\prime}$-bipyridine were also observed [8].

The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 - 6}$ (Table 1) show, in the low field region, eight complex resonances (sometimes overlapping) corresponding to the eight chemically inequivalent protons of 1,10 -phenanthroline or $2,2^{\prime}$-bipyridine. The complete assignment of the chemical shifts and coupling constants (Fig. 1 and Table 1) has been made taking into account the similar patterns of resonances of 1-6 and those found for 7-16, and the ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY and NOESY experiments performed for 9 and 10 (see below).

In addition, the ${ }^{1} \mathrm{H}$ NMR spectra show a singlet resonance at about 2.2 ppm corresponding to the methyl groups of acac and a singlet resonance in the 4.2-4.9 ppm region corresponding to the CH group of acac, which shows ${ }^{195} \mathrm{Pt}$ satellites in 5 and 6 and confirms the C^{γ} coordination. This resonance shifts upfield from the acac- O, O^{\prime} compounds (5.42 ppm for $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{acac})\right.$ (tht)] and 5.47 ppm for its Pt analogue) to the acac- C^{γ} complexes (4.2-4.9 ppm), related to the hybridization change in the C^{γ} atom ($\mathrm{sp}^{2} \rightarrow \mathrm{sp}^{3}$) and the C coordination.

The ${ }^{19}$ F NMR spectra of $\mathbf{1 , 2 , 5}$ and $\mathbf{6}$ (Table 2) show a set of three signals ($\mathrm{AA}^{\prime} \mathrm{MM}^{\prime} \mathrm{X}$ spin system), corresponding to the ortho- F (with ${ }^{195} \mathrm{Pt}$ satellites in 5 and 6), para-F and meta-F. All these data are consistent

Fig. 1.
with the structure for these compounds depicted in Fig. 1.

2.2. Reactivity of $\left[P d\left(C_{6} F_{5}\right)\left(a c a c-C^{\gamma}\right)(N-N)\right]$ towards acidic reactants $H R$

The acac- O, O^{\prime} can be easily displaced as Hacac by a variety of organic molecules containing acidic hydrogen atoms, the resulting anion remaining coordinated to the $\mathrm{Pd}(\mathrm{II})$ [3]. In the same way, the complexes $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-\mathrm{C}^{\gamma}\right)(\mathrm{N}-\mathrm{N})\right](\mathrm{N}-\mathrm{N}=$ phen (1) or bipy (2)) react with the organic substrates $\mathrm{H}-\mathrm{R}$ ($\mathrm{R}=$ $\mathrm{CF}_{3} \mathrm{COO}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{PhCOO}^{-}, \mathrm{PhS}^{-}$or $\left.\mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}{ }^{-}\right)$ to give the corresponding neutral complexes $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.$ -(R)(N-N)] (7-16):

$$
\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-\mathrm{C}^{\gamma}\right)(\mathrm{N}-\mathrm{N})\right]+\mathrm{HR}
$$

$$
\begin{equation*}
\longrightarrow\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{R})(\mathrm{N}-\mathrm{N})\right]+\text { Hacac } \tag{2}
\end{equation*}
$$

$$
\begin{array}{ll}
\mathrm{R}=\mathrm{CF}_{3} \mathrm{COO}, & \mathrm{~N}-\mathrm{N}=\text { phen }(\mathbf{7}) \text { or bipy }(\mathbf{8}) \\
\mathrm{R}=\mathrm{CH}_{3} \mathrm{COO}, & \mathrm{~N}-\mathrm{N}=\text { phen }(9) \text { or bipy }(\mathbf{1 0}) \\
\mathrm{R}=\mathrm{PhCOO}, & \mathrm{~N}-\mathrm{N}=\text { phen }(\mathbf{1 1}) \text { or bipy }(\mathbf{1 2}) \\
\mathrm{R}=\mathrm{PhS}, & \mathrm{~N}-\mathrm{N}=\text { phen }(\mathbf{1 3}) \text { or bipy }(\mathbf{1 4}) \\
\mathrm{R}=\mathrm{P}(\mathrm{~S}) \mathrm{Ph}_{2}, & \mathrm{~N}-\mathrm{N}=\text { phen }(\mathbf{1 5}) \text { or bipy }(\mathbf{1 6})
\end{array}
$$

The reactions were carried out in refluxing dichloromethane for 7-12 and in dichloromethane at room temperature for 13-16. All complexes showed satisfactory elemental analysis (see Section 4). The IR spectra of all complexes showed the disappearance of the absorptions due to the C^{γ}-bonded acac and contain similar patterns of absorptions due to the $\mathrm{C}_{6} \mathrm{~F}_{5}$ and $\mathrm{N}-\mathrm{N}$ ligands, as described for the acetylacetonato derivatives 1 and 2. New absorptions were observed as a consequence of the presence of the different R substituents; for 7-12, which contain a carboxylate ligand, a very strong absorption in the $1710-1620 \mathrm{~cm}^{-1}$ region was found, attributed to the $\nu_{\text {asym }}\left(\mathrm{CO}_{2}\right)$ stretching mode [9]. The $\nu_{\text {sym }}\left(\mathrm{CO}_{2}\right)$ stretching mode overlaps other aromatic resonances falling in the range $1500-1400 \mathrm{~cm}^{-1}$, precluding their unambiguous assignment. For 13 and 14, weak absorptions due to the phenyl rings of the SPh were observed ($1580-1630 \mathrm{~cm}^{-1}$). Finally, 15 and 16 showed characteristic absorptions of the P-coordinated $\mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}\left(630-600 \mathrm{~cm}^{-1}\right)$, assigned to the stretching $\nu_{\mathrm{P}=\mathrm{s}}$ [10].

The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{7 - 1 6}$, in the low field region, showed eight different resonances (sometimes overlapping) corresponding to the eight chemically inequivalent protons of 1,10 -phenanthroline or $2,2^{\prime}$-bipyridine. For 9 and 10, two singlet resonances at about 2.00 ppm indicated the presence of acetate and, for 11-16, unresolved resonances between 6.9 and 7.5 ppm were attributed to the Ph rings.
Table 1
${ }^{1} \mathrm{H}$ NMR data for $1-17$

Complex	δ (ppm)							$\begin{aligned} & { }^{3} J_{\alpha \beta} \\ & (\mathrm{Hz}) \end{aligned}$	$\begin{aligned} & { }^{4} J_{\alpha \gamma} \\ & (\mathrm{Hz}) \end{aligned}$	$\begin{aligned} & { }^{3} J_{\beta \gamma} \\ & (\mathrm{Hz}) \end{aligned}$	$\begin{aligned} & { }^{4} J_{\beta \delta} \\ & (\mathrm{Hz}) \end{aligned}$	$\begin{aligned} & { }^{3} J_{\gamma \delta} \\ & (\mathrm{Hz}) \end{aligned}$	$\begin{aligned} & { }^{3} J_{\alpha^{\prime} \beta^{\prime}} \\ & (\mathrm{Hz}) \end{aligned}$	$\begin{aligned} & { }^{4} J_{\alpha^{\prime} \gamma^{\prime}} \\ & (\mathrm{Hz}) \end{aligned}$	$\begin{aligned} & { }^{3} J_{\beta^{\prime} \gamma^{\prime}} \\ & (\mathrm{Hz}) \end{aligned}$	$\begin{aligned} & { }^{4} J_{\beta^{\prime}} \delta^{\prime} \\ & (\mathrm{Hz}) \end{aligned}$	$\begin{aligned} & { }^{3} J_{\gamma^{\prime},} \\ & \left(\mathrm{Hz}^{\prime}\right. \end{aligned}$	$\begin{aligned} & { }^{3} J_{\delta \delta} \\ & (\mathrm{Hz}) \end{aligned}$	Other data	
	H_{α}	$\mathrm{H}_{\alpha^{\prime}}$	H_{β}	$\mathrm{H}_{\beta^{\prime}}$	H_{γ}	$\mathrm{H}_{\gamma^{\prime}}$	$\mathrm{H}_{\delta}+\mathrm{H}_{\delta^{\prime}}$													
1	10.33	7.86	8.03	7.61	8.44	8.43	7.93, 7.88	5.22	1.38	8.20			5.05	1.25	9.82			8.70	$2.19{ }^{\text {a }}$	$4.26{ }^{\text {b }}$
2	9.96	7.55	7.72	7.30	7.98	7.96	8.04, 8.02	5.63	1.11	6.46	2.51	OR	5.16	BR	7.19	1.59	OR		$2.16{ }^{\text {a }}$	$4.37{ }^{\text {b }}$
3	10.16	7.94	8.02	7.67	8.47	8.47	7.97, 7.92	5.22	1.41	8.14			4.97	1.45	8.20			8.84	$2.22{ }^{\text {a }}$	$4.35{ }^{\text {b }}$
4	9.34	7.84	7.62	7.43	OR	OR	OR	5.25	NR	7.14	1.86	OR	5.43	NR	5.73	2.91	OR		$2.21{ }^{\text {a }}$	$4.51{ }^{\text {b }}$
5	10.55	$8.31{ }^{\text {c }}$	8.07	7.65	8.56	8.53	7.95, 7.90	5.31	1.26	8.20			5.20	1.09	8.18			8.81	$2.18{ }^{\text {a }}$	$4.96{ }^{\text {b,d }}$
6	10.21	OR	7.77	7.34	OR	OR	OR	4.98	NR	7.38	1.59	OR	5.67	OR	7.29	1.62	OR		$2.16{ }^{\text {a }}$	$4.81{ }^{\text {b,d }}$
7	8.76	8.28	7.96	7.71	8.61	8.56	8.05, 8.00	5.02	1.44	8.26			5.18	1.21	8.21			8.84		
9	8.69	8.13	7.82	7.57	8.51	8.48	7.93, 7.88	4.88	1.07	8.50			5.07	0.88	8.20			8.83	$2.06{ }^{\text {e }}$	
10	8.45	7.94	7.52	7.31	8.08	8.04	8.17, 8.14	5.30	1.56	6.70	1.28	7.65	5.53	1.53	7.30	1.34	8.00		$2.00{ }^{\text {e }}$	
11	8.79	8.31	7.81	7.67	8.54	8.52	8.02, 7.96	4.96	1.37	8.27			5.05	1.33	8.25			8.86	7.41-7.31 ${ }^{\text {f }}$	
12	8.38	7.97	OR	OR	OR	OR	8.35, 8.26	5.28				7.90	5.13				7.89		7.40-7.23 ${ }^{\text {f }}$	
13	9.38	8.28	7.86	7.71	8.52	8.50	8.007 .97	5.02	1.48	8.13			4.84	1.35	8.19			8.81	$7.57-6.89{ }^{\text {g }}$	
14	9.13	7.97	7.52	7.38	8.08	8.04	7.50, 7.49	5.02	1.10	8.03	2.26	7.15	5.24	NR	7.09	NR	7.66		$6.90-6.88{ }^{\text {g }}$	
15	7.97	7.92	7.66		8.43		7.96	5.11		8.20									$5.40{ }^{\text {h }}$	i

[^1]Table 2
${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right)$ NMR data for $\mathbf{1 - 1 7}$

Complex	δ (ppm)			$\begin{aligned} & { }^{3} J_{\mathrm{Pt}-\mathrm{F}-\mathrm{F}} \\ & (\mathrm{~Hz}) \end{aligned}$	δ (ppm)		$\begin{aligned} & { }^{4} J_{\mathrm{P}-o-\mathrm{F}} \\ & (\mathrm{~Hz}) \end{aligned}$
	$o-\mathrm{F}_{0}$	$m \cdot \mathrm{~F}_{\mathrm{m}}$	$p-\mathrm{F}_{\mathrm{p}}$		CF_{3}	P	
1	-117.1	-162.3	-159.7				
2	-117.2	-162.3	-159.7				
5	-118.5	-162.7	-160.3	410.5			
6	-118.6	-162.7	- 160.4	406.0			
7	-120.8	-162.5	-158.9		-74.3		
9	-119.8	-162.7	-159.8				
10	-120.0	-162.7	-159.9				
11	-120.1	-162.8	-159.9				
12	-120.2	-162.7	-159.9				
13	-117.3	-163.1	-161.2				
14	-117.4	-163.1	-161.2				
15	-115.2	-162.2	-160.6			57.61	11.2
16	-115.4	-162.1	-160.4			57.83	10.2
17	-113.9	-163.5	-162.2			$\begin{aligned} & \boldsymbol{\delta}\left(\mathrm{P}_{\mathrm{a}}\right)= \\ & { }^{2} J_{\mathrm{ax}}= \end{aligned}$	$\begin{aligned} & \left(P_{x}\right)=0.2 \\ & 206.21 \mathrm{~Hz} \end{aligned}$

In order to obtain an accurate assignment of the resonances of the 1,10 -phenanthroline and $2,2^{\prime}$-bipyridine groups, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY measurements were carried
out for $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{OOCCH}_{3}\right)(\right.$ phen $\left.)\right](9)$ and $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.$ $\left.\left(\mathrm{OOCCH}_{3}\right)(\mathrm{bipy})\right](\mathbf{1 0})$, since they were the most soluble in CDCl_{3}. The correlations allow a distinction to be

Fig. 2.
made between the resonances of each half of the $\mathrm{N}-\mathrm{N}$ ligands: $\left(\mathrm{H}_{\alpha}, \mathrm{H}_{\beta}, \mathrm{H}_{\gamma}\right)$ and $\left(\mathrm{H}_{\alpha^{\prime}}, \mathrm{H}_{\beta^{\prime}}, \mathrm{H}_{\gamma^{\prime}}\right)$. The resonances due to H_{δ} and $\mathrm{H}_{\delta^{\prime}}$ were indistinguishable. They form an AB system without other coupling in the phen complexes, and in the bipy compounds they overlap the resonances of H_{γ} and $\mathrm{H}_{\gamma^{\prime}}$. Fig. 2 shows the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of 9 .

To complement the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY experiments were performed for the same compounds 9 and 10 under the same conditions (see Section 4). The resonance at lowest field and attributed to H_{α} in both compounds shows a strong nuclear Overhauser effect interaction with the resonance because the methyl group of the acetate ligand, indicating the proximity of the interacting nuclei. From these data, a complete assignment of the resonances due to phen and bipy can be derived (Fig. 1). The similarity in the observed pattern of signals for complexes containing phen and bipy (including the acac- $-{ }^{\gamma}$ complexes) allows us to extend these assignments to $\mathbf{1 - 1 6}$. Fig. 3 show the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of 9 .

The ${ }^{19}$ F NMR spectra of $\mathbf{7 - 1 6}$ (see Table 2) all
showed a set of three signals ($\mathrm{AA}^{\prime} \mathrm{MM}^{\prime} \mathrm{X}$ spin system), corresponding to ortho- F , para- F and meta- F , indicating that both halves of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group are equivalent. For 7 an additional singlet resonance due to $\mathrm{CF}_{3} \mathrm{COO}$ is also observed.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{1 5}$ and $\mathbf{1 6}$ (see Table 2) show a single resonance for $\mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}$ at 57 ppm , with a triplet structure due to the coupling with the ortho-F atoms of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group. This confirms the P coordination of the $\mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}$ ligand.

The X-ray crystal structure determination of $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{OOCPh})(\right.$ bipy $\left.)\right](12)$ completes the characterization of this kind of compound.

```
2.3. X-ray structure of [Pd(C ( }\mp@subsup{F}{5}{}\mp@subsup{F}{5}{})(OOCPh)(bipy)]
CHCl}\mp@subsup{3}{}{((12)}\cdot\mp@subsup{\textrm{CHCl}}{3}{}
```

A drawing of the structure of $\mathbf{1 2}$ is presented in Fig. 4. Selected bond distances and angles are collected in Table 3. Positional parameters and their estimated standard deviations are listed in Table 4.

The mononuclear complex $\mathbf{1 2}$ contains a palladium

Fig. 3.

Fig. 4.
atom located in a distorted square planar environment, formed by the two nitrogen atoms of the chelating bipy ligand, the $\mathrm{C}_{\mathrm{ipso}}$ of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group and one oxygen atom of the benzoate ligand, which is monodentate. The $\mathrm{Pd}-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right), \mathrm{Pd}-\mathrm{N}($ bipy $)$ and $\mathrm{Pd}-\mathrm{O}$ (benzoate) bond distances are in the usual range found in the literature [$3 \mathrm{~b}, \mathrm{c}, 9,11$]. The different $\mathrm{Pd}-\mathrm{N}$ distances $(\mathrm{Pd}(1)-\mathrm{N}(1)$, $2.031(4) \AA ; \operatorname{Pd}(1)-\mathrm{N}(2) 2.004(4) \AA)$ are in accord with the higher trans influence of $\mathrm{C}_{6} \mathrm{~F}_{5}$ compared with benzoate [12]. Both $\mathrm{C}-\mathrm{O}$ distances in benzoate are equal within the experimental error: $\mathrm{C}(17)-\mathrm{O}(1)$, $1.266(8) \AA ; \mathrm{C}(17)-\mathrm{O}(2), 1.248(8) \AA$. The $\mathrm{Pd}(1)-\mathrm{O}(2)$ (non-coordinated oxygen) distance is $3.089(5) \AA$. The value for the chelate angle $\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{N}(2)\left(80.2(1)^{\circ}\right)$ is similar to that in other values in palladium complexes with bipy chelating [13]. Both pentafluorophenyl and benzoate are planar, and the dihedral angles formed by these planes and the best least-squares plane defined by

Table 3
Selected bond lengths ((\AA) and angles $\left({ }^{\circ}\right)$ for 12

Bond lengths			
$\mathrm{Pd}(1)-\mathrm{C}(1)$	$1.999(5)$	$\mathrm{Pd}(1)-\mathrm{N}(1)$	$2.031(4)$
$\mathrm{Pd}(1)-\mathrm{N}(2)$	$2.004(4)$	$\mathrm{Pd}(1)-\mathrm{O}(1)$	$2.003(4)$
$\mathrm{O}(1)-\mathrm{C}(17)$	$1.266(8)$	$\mathrm{O}(2)-\mathrm{C}(17)$	$1.248(8)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.494(8)$		
Bond angles			
$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{N}(1)$	$176.9(2)$	$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{N}(2)$	$97.2(2)$
$\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{N}(2)$	$80.2(1)$	$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{O}(1)$	$87.4(2)$
$\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{O}(1)$	$95.1(1)$	$\mathrm{N}(2)-\mathrm{Pd}(1)-\mathrm{O}(1)$	$174.6(1)$
$\mathrm{Pd}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$124.1(4)$	$\mathrm{Pd}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$121.7(4)$
$\mathrm{Pd}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	$125.4(1)$	$\mathrm{Pd}(1)-\mathrm{N}(1)-\mathrm{C}(11)$	$114.6(1)$
$\mathrm{Pd}(1)-\mathrm{N}(2)-\mathrm{C}(16)$	$125.5(1)$	$\mathrm{Pd}(1)-\mathrm{N}(2)-\mathrm{C}(12)$	$114.5(1)$
$\mathrm{Pd}(1)-\mathrm{O}(1)-\mathrm{C}(17)$	$120.8(4)$	$\mathrm{O}(1)-\mathrm{C}(17)-\mathrm{O}(2)$	$125.1(6)$
$\mathrm{O}(1)-\mathrm{C}(17)-\mathrm{C}(18)$	$115.1(5)$	$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{C}(18)$	$119.7(5)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$120.6(3)$	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(23)$	$119.4(3)$

Table 4
Atomic coordinates for 12

	$\begin{aligned} & x \\ & \left(\times 10^{-4}\right) \end{aligned}$	$\begin{aligned} & y \\ & \left(\times 10^{-4}\right) \end{aligned}$	$\begin{aligned} & z \\ & \left(\times 10^{-4}\right) \end{aligned}$
Pd(1)	6782(1)	4396(1)	-565(1)
C(1)	7251(4)	3327(3)	-953(3)
C(2)	6984(3)	2518(3)	-804(3)
C(3)	7317(4)	1778(3)	-1069(3)
C(4)	7945(4)	1852(4)	-1499(3)
C(5)	8259(5)	2626(4)	-1651(4)
C(6)	7892(5)	3352(4)	-1387(3)
F(1)	6360(3)	2408(2)	-378(2)
F(2)	$7010(3)$	1004(2)	-917(2)
F(3)	8267(3)	1126(2)	-1774(2)
F(4)	8872(3)	2688(3)	-2080(3)
F(5)	8218(3)	4117(3)	-1568(3)
C(7)	6647(2)	6031(2)	241(2)
C(8)	6242	6778	436
C(9)	5471	6992	173
C(10)	5104	6459	-286
C(11)	5509	5712	-481
N(1)	6280	5498	-218
C(16)	5578(3)	3929(2)	-1635(2)
C(15)	4841	4041	- 1981
C(14)	4300	4708	- 1821
C(13)	4496	5262	-1316
C(12)	5233	5149	-971
N(2)	5774	4483	- 1130
O(1)	7790(3)	4429(2)	3(2)
O(2)	7181(3)	3675(3)	786(2)
C(17)	7789(4)	4058(4)	546(3)
C(19)	8636(3)	3873(3)	1552(2)
C(20)	9394	3913	1879
C(21)	10114	4164	1554
C(22)	10076	4375	902
C(23)	9318	4335	575
C(18)	8598	4084	900
C(24)	3439(5)	7814(5)	- 1573(4)
$\mathrm{Cl}(1)$	3568(7)	7147(6)	-2320(5)
$\mathrm{Cl}(2)$	4480(10)	8106(11)	-1316(8)
$\mathrm{Cl}(3)$	3010(8)	8803(8)	- 1757(7)
$\mathrm{Cl}\left(1^{\prime}\right)$	3863(4)	7238(3)	- 2205(3)
$\mathrm{Cl}\left(2^{\prime}\right)$	4247(6)	8438(6)	-1193(4)
$\mathrm{Cl}\left(3^{\prime}\right)$	2720(5)	8571(5)	- 1886(3)
$\mathrm{Cl}\left(1^{\prime \prime}\right)$	4133(8)	7313(7)	- 1983(6)
$\mathrm{Cl}\left(2^{\prime \prime}\right)$	3918(12)	8554(12)	-1115(9)
$\mathrm{Cl}\left(3^{\prime \prime}\right)$	2502(8)	8231(9)	- 1954(7)

$\mathrm{Pd}(1)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{N}(2)$ (coordination plane) are $78.3(2)^{\circ}$ and $75.5(1)^{\circ}$ respectively [14].

2.4. Reaction of $\left[P d\left(C_{6} F_{5}\right)\left(a c a c-C^{\gamma}\right)(\right.$ bipy $\left.)\right]$ with $H P P h_{2}$

Finally, we have studied the reaction of $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.$ -(acac-C ${ }^{\gamma}$)(bipy)] with HPPh_{2} in tetrahydrofuran (THF) (molar ratio, 1/1), to prepare the corresponding palladium compound with a terminal phosphido ligand [15]. However, the expected complex $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{2}\right)(\right.$ bipy $\left.)\right]$ is not obtained but the binuclear derivative $[\operatorname{Pd}(\mu$ $\left.\left.\mathrm{PPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{HPPh}_{2}\right)\right]_{2}(17)$ is although with a very low yield (20%). By increasing the amount of HPPh_{2} (molar ratio, $1 / 2$), 17 can be isolated with a higher yield
(50\%). The reaction is schematized as follows and involves the displacement not only of acetylacetone but also of bipy:

$$
\begin{align*}
& {\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\text { acac }-\mathrm{C}^{\gamma}\right)(\text { bipy })\right]+2 \mathrm{HPPh}_{2}} \\
& \xrightarrow[\longrightarrow]{\longrightarrow}\left[\operatorname{Pd}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{HPPh}_{2}\right)\right]_{2} \\
& \quad+\text { Hacac + bipy } \tag{3}
\end{align*}
$$

The formation of 17 is a clear indication of the high tendency of the phosphido groups to act as bridging ligands, and this must be the driving force for the displacement of the typically chelating bipy. It should also be noted that the reaction of $\left[\mathrm{Pd}_{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)} \mathrm{acac}-\right.$ $\left.C^{\gamma}\right)(\mathrm{N}-\mathrm{N})$] with $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{H}$ (another usually bridging ligand) does not result in the displacement of the bipy but in the formation of the mononuclear complexes 15 and 16 with terminal $\mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}$. Complex 17 shows satisfactory elemental analysis (see Section 4) and its IR spectrum shows characteristic absorptions of P -coordinated HPPh_{2} [16] and of $\mathrm{C}_{6} \mathrm{~F}_{5}$ [6], together with several absorptions in the phosphine regions (770-700 and $570-470 \mathrm{~cm}^{-1}$). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 17 (see Table 2) shows two resonances at 0.2 and -115.4 ppm characteristic of an $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system. A similar spin system and values of the chemical shifts have been found for the related neutral phosphido-bridged complexes $\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{PR}_{2}\right)(\mathrm{X})\left(\mathrm{PR}_{3}^{\prime}\right)\right\}_{2}\right][17]$. The high value of the coupling constant ${ }^{2} J_{\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{X}}}={ }^{2} J_{\mathrm{P}_{\mathrm{A}^{\prime}}-\mathrm{P}_{\mathrm{X}^{\prime}}}=341 \mathrm{~Hz}$, indicates a trans arrangement of the P_{A} and P_{x} atoms [18]. The ${ }^{19} \mathrm{~F}$ NMR spectrum showed one type of $\mathrm{C}_{6} \mathrm{~F}_{5}$ group and the ${ }^{1} \mathrm{H}$ NMR spectrum showed signals due to the Ph groups and a doublet of multiplets, centred at 5.4 ppm and attributed to the H atom of $H \mathrm{PPh}_{2}$. All these data, together with the observation in the IR spectrum of a single absorption in the $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{X}$-sensitive zone, are consistent with the structure shown in Fig. 5.

3. Conclusion

The synthesis of acetylacetonato- C^{γ} complexes of $\mathrm{M}(\mathrm{II})(\mathrm{M}=\mathrm{Pd}$ or Pt$)$ can be accomplished by treatment of acetylacetonato- O, O^{\prime} derivatives, containing a weakly coordinated tht group, with chelating $\mathrm{N}-\mathrm{N}$. The protonation of these acac- C^{γ} complexes by acidic organic substrates [HR] causes the displacement of the acety-

Fig. 5.
lacetonate group as Hacac and the coordination of the anionic fragment $[R]^{-}$.

4. Experimental section

4.1. General procedures

Solvents were dried and distilled under dinitrogen by standard methods. IR spectra ($4000-200 \mathrm{~cm}^{-1}$) were recorded on a Perkin-Elmer 883 spectrophotometer in Nujol mulls. ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded at room temperature on a Bruker ARX-300 spectrometer in CDCl_{3} solution. Elemental analyses were carried out on a Perkin-Elmer 240 -B microanalyser. The starting compounds [M(C6 X_{5})(acac$\left.O, O^{\prime}\right)($ tht $)$ [3a] and $\mathrm{HP}(\mathrm{S}) \mathrm{Ph}_{2}$ [19] were prepared according to published methods.

4.2. Synthesis of acac-C C^{γ} complexes $\left[M\left(C_{6} X_{5}\right)(a c a c-\right.$ $\left.\left.C^{\gamma}\right)(N-N)\right](1-6)$

$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-\mathrm{C}^{\gamma}\right)(\mathrm{phen})\right]$ (1). To a solution of $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-O, O^{\prime}\right)(\mathrm{tht})\right](0.200 \mathrm{~g}, 0.434 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added 1,10-phenanthroline- $\mathrm{H}_{2} \mathrm{O}$ ($0.093 \mathrm{~g}, 0.434 \mathrm{mmol}$) and the solution was stirred at ambient temperature for 24 h . During this time a paleyellow solid precipitated. The precipitation was completed by partial evaporation (4 ml) and $\mathrm{Et}_{2} \mathrm{O}$ addition (20 ml). The solid was filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{ml})(1)$ (yield, $85 \%(0.200 \mathrm{~g})$). Anal. Found: C, 49.57; H, 2.56; N, 5.18. $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}$ Calc.: C, 49.97; H, 2.73; N, 5.06%. IR: $\nu 1680 \mathrm{vs}$, 1633 s ($\nu_{\mathrm{C}=\mathrm{o}}, \mathrm{acac}$) $1606 \mathrm{~m}, 1594 \mathrm{~m}, 1586 \mathrm{~m}$ (phen), 1502vs, 1061vs, 954vs ($\mathrm{C}_{6} \mathrm{~F}_{5}$), 851vs (phen), 791s $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right.$, X-sensitive) cm^{-1}.

Complexes 2, 3 and 4 were obtained similarly. $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-\mathrm{C}^{\gamma}\right)(\mathrm{bipy})\right] \quad$ (2). $\quad\left[\mathrm{Pd}^{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{acac}-\right.$ $\left.O, O^{\prime}\right)($ tht $\left.)\right](0.255 \mathrm{~g}, 0.554 \mathrm{mmol})$ reacts with $2,2^{\prime}$-bipyridine ($0.086 \mathrm{~g}, 0.554 \mathrm{mmol}$) to give 2 as a pale-yellow solid (yield, 72% (0.211 g)). Anal. Found: C, 47.30; H, 2.99; N, 5.38. $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}$ Calc.: C , $47.70 ; \mathrm{H}, 2.86 ; \mathrm{N}, 5.29 \%$. IR: $\nu 1679 \mathrm{vs}, 1640 \mathrm{~s}\left(\nu_{\mathrm{C}=0}\right.$, acac), 1602m (bipy), 1504vs, 1062vs, 952vs ($\mathrm{C}_{6} \mathrm{~F}_{5}$), $790 \mathrm{~s}\left(\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{X}\right.$-sensitive), 763vs (bipy) cm^{-1}.
$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\left(\mathrm{acac}-\mathrm{C}^{\gamma}\right)(\right.$ phen $\left.)\right]$ (3). $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\mathrm{acac}-\right.$ $\left.O, O^{\prime}\right)($ tht $\left.)\right](0.095 \mathrm{~g}, 0.175 \mathrm{mmol})$ reacts with $1,10-$ phenanthroline $-\mathrm{H}_{2} \mathrm{O}(0.037 \mathrm{~g}, 0.175 \mathrm{mmol})$ to give 3 as a pale-yellow solid (yield, $43 \%(0.050 \mathrm{~g})$). Anal. Found: C, 43.40; H, 2.66; N, 4.02. $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{Cl}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}$ Calc.: C, $43.50 ; \mathrm{H}, 2.38 ; \mathrm{N}, 4.41 \%$. IR: v 1685vs, $1630 \mathrm{~s}\left(\nu_{\mathrm{C}=\mathrm{o}}, \mathrm{acac}\right), 1605 \mathrm{~m}, 1590 \mathrm{~m}, 1585 \mathrm{~m}$ (phen), $1330 \mathrm{vs}, 1320 \mathrm{vs}, 1295 \mathrm{vs}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)$, 847vs (phen), 830s $\left(\mathrm{C}_{6} \mathrm{Cl}_{5}, \mathrm{X}\right.$-sensitive), $673\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right) \mathrm{cm}^{-1}$.
$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\left(\mathrm{acac}-\mathrm{C}^{\gamma}\right)(\right.$ bipy $\left.)\right]$ (4). $\quad\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\mathrm{acac}-\right.$ $\left.O, O^{\prime}\right)($ tht $\left.)\right](0.095 \mathrm{~g}, 0.175 \mathrm{mmol})$ reacts with $2,2^{\prime}$-bi-
pyridine ($0.027 \mathrm{~g}, 0.175 \mathrm{mmol}$) to give 4 as a yellow solid (yield, $40 \%(0.043 \mathrm{~g})$). Anal. Found: C, 41.61; H, 2.72; $\mathrm{N}, 4.45 . \mathrm{C}_{21} \mathrm{H}_{15} \mathrm{Cl}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}$ Pd Calc.: C, 41.28; H, 2.47 , N, 4.58%. IR: $\nu 1677 \mathrm{vs}, 1624 \mathrm{~s}$ ($\nu_{\mathrm{C}=0}$, acac), 1597 m (bipy), 1323vs, $1313 \mathrm{vs}, 1288 \mathrm{vs}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)$, 835 s $\left(\mathrm{C}_{6} \mathrm{Cl}_{5}, \mathrm{X}\right.$-sensitive), 760 vs (bipy), $670\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right) \mathrm{cm}^{-1}$.
$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-\mathrm{C}^{\gamma}\right)(\mathrm{phen})\right]$ (5). To a solution of $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-O, O^{\prime}\right)(\mathrm{thf})\right](0.300 \mathrm{~g}, 0.546 \mathrm{mmol})$ in benzene (20 ml) was added 1,10 -phenanthroline- $\mathrm{H}_{2} \mathrm{O}$ ($0.117 \mathrm{~g}, 0.546 \mathrm{mmol}$). The resulting solution was heated under reflux for 7 h and cooled; then the solvent evaporated to dryness. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ and filtered, and the resulting solution was evaporated to dryness. Treatment of the residue with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ gave 5 as a yellow solid (yield, 40% (0.140 g). Anal. Found: C, 44.06; H, 1.96; N, 4.81. $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}$ Pt Calc.: C, $43.06 ; \mathrm{H}, 2.35 ; \mathrm{N}, 4.36 \%$. IR: $\nu 1688 \mathrm{vs}, 1645 \mathrm{~s}$ ($\nu_{\mathrm{C}=0}$, acac $), 1605 \mathrm{~m}, 1586 \mathrm{~m}$ (phen), $1509 \mathrm{vs}, 1069 \mathrm{vs}, 952 \mathrm{vs}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right), 844 \mathrm{vs}$ (phen), 804s ($\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{X}$-sensitive) cm^{-1}.
$\left[\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\right.\right.$ acac- $\left.\mathrm{C}^{\gamma}\right)($ bipy $\left.)\right]$ (6). Complex 6 was obtained following a work-up similar to that described for 5: $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-O, O^{\prime}\right)(\mathrm{tht})\right](0.300 \mathrm{~g}, 0.546 \mathrm{mmol})$ reacts with $2,2^{\prime}$-bipyridine ($0.081 \mathrm{~g}, 0.546 \mathrm{mmol}$) to give 6 as a yellow solid (yield, 45% (0.152 g)). Anal. Found: C, 41.09; $\mathrm{H}, 2.40 ; \mathrm{N}, 4.72 . \mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pt}$ Calc.: C, 40.85 ; H, 2.44; N, 4.53\%. IR: ν 1688vs, $1649 \mathrm{~s}\left(\nu_{\mathrm{C}=0}, \mathrm{acac}\right), 1606 \mathrm{~m}$ (bipy), 1506vs, 1066vs, 953vs ($\mathrm{C}_{6} \mathrm{~F}_{5}$), 804s ($\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{X}$-sensitive), 764vs (bipy) cm^{-1}.
4.3. Synthesis of complexes of stoichiometry [Pd-
$\left.\left(C_{6} F_{5}\right)(R)(N-N)\right](7-16)$
$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{OOCCF}_{3}\right)(\mathrm{phen})\right]$ (7). To a suspension of $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-\mathrm{C}^{\gamma}\right)(\mathrm{phen})\right](1)(0.150 \mathrm{~g}, 0.271 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ was added $\mathrm{CF}_{3} \mathrm{COOH}(21 \mu \mathrm{l}, 0.280$ $\mathrm{mmol})$. The resulting colourless solution was heated under reflux for 5 h . After cooling, the solvent was evaporated to dryness and the residue treated with 25 ml of $\mathrm{Et}_{2} \mathrm{O}$, giving (7) as an off-white solid (yield, 95% $(0.146 \mathrm{~g})$). Anal. Found: C, 42.03 ; H, 1.49; N, 4.64. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~F}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$ Pd Calc.: C, 42.39; H, 1.42; N, 4.94\%. IR: $\nu, 1708 \mathrm{vs}$ ($\nu_{\mathrm{C}=0}$, acetate), $1603 \mathrm{~m}, 1585 \mathrm{~m}, 1572 \mathrm{~m}$ (phen), 1506vs, 1065vs, 957vs ($\mathrm{C}_{6} \mathrm{~F}_{5}$), 846vs (phen), 797s ($\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{X}$-sensitive) cm^{-1}.
$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{OOCCF}_{3}\right)(\right.$ bipy $\left.)\right]$ (8). Complex 8 was obtained similarly: $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-\mathrm{C}^{\gamma}\right)(\right.$ bipy $\left.)\right]$ (2) (0.250 $\mathrm{g}, 0.473 \mathrm{mmol}$) reacts with $\mathrm{CF}_{3} \mathrm{COOH}(38 \mu \mathrm{l}, 0.500$ mmol) to give $\mathbf{8}$ as a yellow solid (yield, 86% (0.220 g)). Anal. Found: C, 39.67; H, 1.51; N, 5.10. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~F}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$ Pd Calc.: C, 39.84; H, 1.48; N, 5.16%. IR: $\nu 1700 \mathrm{vs}$ ($\nu_{\mathrm{C}=0}$, acetate), 1607 m (bipy), 1504 vs , 1061vs, 956vs ($\mathrm{C}_{6} \mathrm{~F}_{5}$), 789s ($\mathrm{C}_{6} \mathrm{~F}_{5}$, X-sensitive), 769vs (bipy) cm^{-1}.
$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{OOCCH}_{3}\right)(\right.$ phen $\left.)\right]$ (9). To a suspension of $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-\mathrm{C}^{\gamma}\right)(\mathrm{phen})\right](1)(0.250 \mathrm{~g}, 0.452 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ was added $\mathrm{CH}_{3} \mathrm{COOH}(27 \mu \mathrm{l}, 0.460$ mmol) and the mixture was heater under reflux for 5 h . The initial suspension gradually dissolved and gave a pale-yellow solution. After cooling, the solvent was evaporated to dryness and the residue was treated with 25 ml of $\mathrm{Et}_{2} \mathrm{O}$, giving 9 as a pale-yellow solid (yield, $97 \%(0.225 \mathrm{~g})$). Anal. Found: C, $46.32 ; \mathrm{H}, 2.14$; N, 5.49. $\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}$ Calc: C , 46.85 ; H, 2.16; N , 5.46%. IR: $\nu 1630 \mathrm{vs}, 1602 \mathrm{vs}$ ($\nu_{\mathrm{C}=0}$, acetate), 1504 vs , 1061 vs , 952vs ($\mathrm{C}_{6} \mathrm{~F}_{5}$), 849vs (phen), 795s ($\mathrm{C}_{6} \mathrm{~F}_{5}$, Xsensitive) cm^{-1}.
$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{OOCCH}_{3}\right)(\mathrm{bipy})\right](10)$. Complex 10 was obtained similarly. $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-\mathrm{C}^{\gamma}\right)(\right.$ bipy $\left.)\right]$ (2) ($0.250 \mathrm{~g}, 0.473 \mathrm{mmol}$) reacts with $\mathrm{CH}_{3} \mathrm{COOH}(28 \mu \mathrm{I}$, 0.480 mmol) to give 10 as a pale-yellow solid (yield, $95 \%(0.220 \mathrm{~g})$). Anal. Found: C, 44.26; H, 2.21; N, 5.75. $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}$ Pd Calc.: C, 44.24; H, 2.27; N , 5.73%. IR: $\nu 1622 \mathrm{vs}, 1604 \mathrm{vs}$ ($\nu_{\mathrm{C}=0}$, acetate), 1502 vs , 1060 vs , 957vs ($\mathrm{C}_{6} \mathrm{~F}_{5}$), 792s ($\mathrm{C}_{6} \mathrm{~F}_{5}$, X-sensitive), 763vs (bipy) cm^{-1}.
$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{OOCPh})(\mathrm{phen})\right]$ (11). $\quad\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{acac}-\right.$ $\left.C^{\gamma}\right)($ phen $\left.)\right]$ (1) $(0.150 \mathrm{~g}, 0.271 \mathrm{mmol})$ reacts with $\mathrm{Ph}-$ $\mathrm{COOH}(0.033 \mathrm{~g}, 0.280 \mathrm{mmol})$ to give 11 as a pale-yellow solid (yield, 93% (0.145 g)). Anal. Found: C, 51.76; H, 2.14; N, 4.80. $\mathrm{C}_{25} \mathrm{H}_{13} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}$ Pd Calc: C, $52.24 ; \mathrm{H}, 2.27 ; \mathrm{N}, 4.87 \%$. IR: $\nu 1635 \mathrm{vs}, 1620 \mathrm{vs}$ ($\nu_{\mathrm{C}=0}$, acetate), $1600 \mathrm{~m}, 1578 \mathrm{~m}$ (phen), $1504 \mathrm{vs}, 1064 \mathrm{vs}, 953 \mathrm{vs}$ ($\mathrm{C}_{6} \mathrm{~F}_{5}$), 853 vs (phen), $794 \mathrm{~s}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right.$, X-sensitive) cm^{-1}.
$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{OOCPh})(\mathrm{bipy})\right](12) . \quad\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{acac}-\right.$ C^{γ})(bipy)] (2) $(0.250 \mathrm{~g}, 0.473 \mathrm{mmol})$ reacts with $\mathrm{Ph}-$ $\mathrm{COOH}(0.115 \mathrm{~g}, 0.480 \mathrm{mmol})$ to give 12 as a pale-yellow solid (yield, 83% (0.216 g)). Anal. Found: C, 50.29; H, 2.86; N, 4.92. $\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}$ Pd Calc.: C, $50.15 ; \mathrm{H}, 2.38 ; \mathrm{N}, 5.08 \%$. IR: $\nu 1643 \mathrm{vs}, 1626 \mathrm{vs}$ ($\nu_{\mathrm{C}=0}$, acetate), 1604 (bipy), 1501vs, 1059 vs, 958 vs ($\mathrm{C}_{6} \mathrm{~F}_{5}$), $792 \mathrm{~s}\left(\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{X}\right.$-sensitive), 764vs (bipy) cm^{-1}.
$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{SPh})(\right.$ phen $\left.)\right]$ (13). To a suspension of $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-\mathrm{C}^{\gamma}\right)(\mathrm{phen})\right](1)(0.250 \mathrm{~g}, 0.452 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ was added PhSH ($47 \mu \mathrm{l}, 0.460$ mmol). The initial yellow suspension became orange after stirring for 6 h . The solid was filtered off and washed with 100 ml of $\mathrm{Et}_{2} \mathrm{O}$ (13) (yield, 83% (0.210 g)). Anal. Found: C, $50.94 ;$ H, $2.40 ;$ N, 4.98 ; S, 5.15. $\mathrm{C}_{24} \mathrm{H}_{13} \mathrm{~F}_{5} \mathrm{~N}_{2}$ PdS Calc.: C, 51.21; H, 2.33; N, 4.97; S, 5.69%. IR: $\nu 1629 \mathrm{~m}, 1579 \mathrm{~m}(\mathrm{Ph}), 1603 \mathrm{~m}, 1582 \mathrm{~m}$, 1563 m (phen), $1504 \mathrm{vs}, 1063 \mathrm{vs}$, $952 \mathrm{vs}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right), 847 \mathrm{vs}$ (phen), 794s ($\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{X}$-sensitive) cm^{-1}.
$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{SPh})(\mathrm{bipy})\right]$ (14). Complex 14 was obtained similarly: $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-\mathrm{C}^{\gamma}\right)(\mathrm{bipy})\right]$ (2) (0.250 $\mathrm{g}, 0.473 \mathrm{mmol})$ reacts with $\mathrm{PhSH}(51 \mu \mathrm{l}, 0.500 \mathrm{mmol})$ to give 14 as an orange solid (yield, 91% (0.232 g)). Anal. Found: C, 48.41; H, 2.60; N, 5.12; S, 5.97. $\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{~F}_{5} \mathrm{~N}_{2}$ PdS Calc.: C, 49.04; H, 2.43; N, 5.20; S, 5.95%. IR: $\nu 1636 \mathrm{~m}, 1578 \mathrm{~m}(\mathrm{Ph}), 1600 \mathrm{~m}$ (bipy),

1504vs, 1061vs, 952 vs ($\mathrm{C}_{6} \mathrm{~F}_{5}$), 794s ($\mathrm{C}_{6} \mathrm{~F}_{5}$, X-sensitive), 763 vs (bipy) cm^{-1}.
$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}\right)(\right.$ phen $\left.)\right](15)$. To a suspension of $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-\mathrm{C}^{\gamma}\right)(\right.$ phen $\left.)\right](1)(0.150 \mathrm{~g}, 0.271 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added $\mathrm{HP}(\mathrm{S}) \mathrm{Ph}_{2}(0.059 \mathrm{~g}$, 0.271 mmol) and the mixture was stirred at ambient temperature for 3 h . The resulting deep-yellow solution was evaporated to dryness and the residue was treated with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$, giving a deep-yellow solid 15 (yield, $82 \%(0.152 \mathrm{~g})$). Anal. Found: C, 53.84; H, 2.74; N, 4.21; S, 4.73. $\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{~F}_{5} \mathrm{~N}_{2}$ PPdS Calc.: C, $53.70 ; \mathrm{H}$, 2.70; N, 4.17; S, 4.78%. IR: $\nu 1630 \mathrm{~m}$ (Ph), 1605 m , $1595 \mathrm{~m}, 1585 \mathrm{~m}$ (phen), $1503 \mathrm{vs}, 1060 \mathrm{vs}$, $950 \mathrm{vs}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$, 845 vs (phen), 790s ($\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{X}$-sensitive), 630s, 610 s , $600 \mathrm{~s}, 520 \mathrm{vs}\left(\mathrm{SPPh}_{2}\right) \mathrm{cm}^{-1}$.
$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}\right\}(\right.$ bipy $\left.)\right]$ (16) was obtained similarly. $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-\mathrm{C}^{\gamma}\right)(\mathrm{bipy})\right](2)(0.150 \mathrm{~g}, 0.284$ $\mathrm{mmol})$ reacts with $\mathrm{HP}(\mathrm{S}) \mathrm{Ph}_{2}(0.062 \mathrm{~g}, 0.284 \mathrm{mmol})$ to give 15 as an orange solid (yield, $61 \%(0.112 \mathrm{~g})$). Anal. Found: C, 51.98; H, 3.15; N, 4.03; S, 4.88. $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~F}_{5} \mathrm{~N}_{2}$ PPdS Calc.: C, 50.98; H, 3.80; N, 4.33; S, 4.95%. IR: $\nu 1630 \mathrm{~m}$ (Ph), 1605 m (bipy), 1500 vs , 1065vs, 955vs ($\mathrm{C}_{6} \mathrm{~F}_{5}$), 792s ($\mathrm{C}_{6} \mathrm{~F}_{5}$, X-sensitive), 765vs (bipy), 630s, 610s, $605 \mathrm{~s}, 520 \mathrm{vs}\left(\mathrm{SPPh}_{2}\right) \mathrm{cm}^{-1}$.

4.4. Synthesis of $\left[\left\{P d\left(\mu-P P h_{2}\right)\left(C_{6} F_{5}\right)\left(H P P h_{2}\right)\right\}_{2}\right]$ (17)

To a suspension of $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-\mathrm{C}^{\gamma}\right)(\right.$ bipy $\left.)\right]$ (2) $(0.250 \mathrm{~g}, 0.473 \mathrm{mmol})$ in dry THF (20 ml) under dinitrogen was added $\mathrm{HPPh}_{2}(0.172 \mathrm{ml}, 1.0 \mathrm{mmol})$. The initial pale-yellow solid dissolved immediately and gave a deep orange solution. This solution was stirred at room temperature for 15 min and then the solvent evaporated to dryness. Addition of dry $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$ and continuous stirring gave 17 as a deep-yellow solid (yield, 50% (0.154 g)). Anal. Found: C, 56.38; H, 2.94. $\mathrm{C}_{60} \mathrm{H}_{42} \mathrm{~F}_{10} \mathrm{P}_{4} \mathrm{Pd}_{2}$ Calc.: C, 55.88; H, 3.28\%. IR: ν $2340 \mathrm{~m}\left(\nu_{\mathrm{P}-\mathrm{H}}, \mathrm{HPPh}_{2}\right), 1497 \mathrm{vs}, 1055 \mathrm{vs}, 948 \mathrm{vs}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$, 855 s , 845s $\left(\mathrm{HPPh}_{2}\right)$, 769s ($\mathrm{C}_{6} \mathrm{~F}_{5}$, X-sensitive), 505 vs , 494vs, 461vs $\left(\mathrm{HPPh}_{2}+\mu-\mathrm{PPh}_{2}\right) \mathrm{cm}^{-1}$.
4.5. ${ }^{l} \mathrm{H}-{ }^{l} \mathrm{H}$ COSY and NOESY measurements for 9 and 10

The experiments were performed at a measuring frequency of 300.13 MHz . The data were acquired into a 256×1024 matrix and then transformed into $1024 \times$ 1024 points using a sine window in each dimension. For the NOESY measurements the mixing time was 400 ms .

4.6. Crystal structure determination

Suitable crystals of 12 were obtained by slow diffusion of hexane into a CHCl_{3} solution of the crude product at room temperature. Intensity data were recorded at room temperature using graphite-monochro-
mated Mo $\mathrm{K} \alpha$ X-radiation on a Siemens Stoe AED 2 diffractometer ($4^{\circ} \leqslant 2 \theta \leqslant 47^{\circ}$). Accurate lattice parameters were determined from the position of 18 reflections ($24^{\circ} \leqslant 2 \theta \leqslant 28^{\circ}$). Intensity data were corrected for Lorentz and polarization effects. Absorption corrections were based on Ψ-scan solutions (rescaled minimum and maximum transmission factors of 0.612 and 0.663 , respectively).

4.7. Crystal data

$\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{Cl}_{3} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}$ (12); $M=670.13$; orthorhombic; space group, Pbca; $a=16.058$ (3) $\AA, b=15.601$ (3) \AA and $c=20.766$ (4) $\AA ; V=5202.35 \AA^{3} ; Z=8$; $D_{\mathrm{c}}=1.71 \mathrm{~g} \mathrm{~cm}^{-3} ; \quad F(000)=2648 ; \mu=10.8 \mathrm{~cm}^{-1} ;$ 3817 unique data; 3008 observed data $((F>4.0 \sigma(F))$ for the refinement of 303 parameters; scan method, $\omega-\theta ; \quad w^{-1}=\sigma^{2}(\mathrm{~F})+0.0003 F^{2} ; \quad R=0.0472 ; \quad w R=$ $0.0515 ; \Delta / \sigma=0.001$; largest difference peaks 0.57 and -0.68 electrons \AA^{-3}.

4.8. Structure solution and refinement

The structure was solved by the use of Patterson and Fourier methods. All calculations were carried out with shelxtl-plus [20]. All non-hydrogen atoms were refined with anisotropic thermal parameters, except for the atoms of the disordered crystallization solvent. The Ph groups were refined as rigid rings. Hydrogen atoms were introduced in calculated positions and refined with a unique thermal parameter. Calculations by the fullmatrix least-squares method were performed on a Mi-cro-Vax 4000-300 computer.

5. Supplementary material available

Tables of atomic coordinates, bond lengths and angles, and thermal parameters have been deposited with the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK. Structure factors are available from the authors.

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica (Spain) for financial support (Project PB92-0364). E.P.U. thanks Diputación General de Aragón for a postdoctoral grant (BCB 1492).

References

[1] (a) R.C. Mehrotra, R. Bohra and D.P. Gaur, Metal β-diketonates and Allied Derivatives, Academic Press, London, 1978;
(b) A.R. Siedle, in G. Wilkinson, R.D. Gillard and J.A. McCleverty (eds.), Comprehensive Coordination Chemistry Vol. 2, Pergamon, Oxford, 1987, p. 365.
[2] S. Kawaguchi, Coord. Chem. Rev., 70 (1986) 51.
[3] (a) J. Forniés, R. Navarro and E.P. Urriolabeitia, J. Organomet. Chem., 390 (1990) 257; (b) J. Forniés, F. Martínez, R. Navarro and E.P. Urriolabeitia, Polyhedron, 9 (1990) 2181; (c) J. Forniés, F. Martínez, R. Navarro, E.P. Urriolabeitia and A.J. Welch, J. Chem. Soc., Dalton Trans., (1993) 2147; (d) J. Forniés, F. Martínez, R. Navarro, M. Tomás and E.P. Urriolabeitia, J. Chem. Soc., Dalton Trans., (1994) 505.
[4] B. Bock, K. Flatau, H. Junge, M. Khur and H. Musso, Angew. Chem.,Int. Edn. Engl., 10 (1971) 225.
[5] D. Gibson, Coord. Chem. Rev., 4 (1969) 225.
[6] R.Usón and J. Forniés, Adv. Organomet. Chem., 28 (1988) 219, and references cited therein.
[7] (a) E. Maslowsky, Jr., Vibrational Spectra of Organometallic Compounds, Wiley, New York, 1977, p. 437; (b) J. Casabó, J.M. Coronas and J. Sales, Inorg. Chim. Acta, 65 (1982) L161.
[8] K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley, New York, 2nd edn., 1970, p. 229, and references cited therein.
[9] G.B. Deacon and R.J. Phillips, Coord. Chem. Rev., 33 (1980) 227.
[10] (a) D.M. Anderson, E.A.V. Ebsworth, T.A. Stephenson and
M.D. Walkinshaw, J. Chem. Soc., Dalton Trans., (1982) 2343;
(b) E. Lindner and C.P. Krieg, J. Organomet. Chem., 269 (1984) 65; (c) M.T. Pinillos, M.P. Jarauta, D. Carmona, L.A. Oro, M.C. Apreda, C. Foces-Foces and F.H. Cano, J. Chem. Soc., Dalton Trans., (1989) 1987.
[11] A.G. Orpen, L. Brammer, F.H. Allen, O. Kennard, D.G. Watson and R. Taylor, J. Chem. Soc., Dalton Trans., (1989) S1.
[12] M.L. Tobe, in G. Wilkinson, R.D. Gillard and J.A. McCleverty (eds.), Comprehensive Coordination Chemistry, Vol. 1, Pergamon, Oxford, 1987, p. 315, and references cited therein.
[13] P.C. Chieh, J. Chem. Soc., Dalton Trans., (1972) 1643.
[14] M. Nardelli, Comput. Chem., 7 (1983) 95.
[15] (a) A.J. Blake, R.W. Cockman, E.A.V. Ebsworth, S.G.D. Henderson, J.H. Holloway, N.J. Pilkington and D.W.H. Rankin, Phosphorus Sulphur, 30 (1987) 143; (b) A. Handler, P. Peringer and E.P. Müller, J. Chem. Soc., Dalton Trans., (1990) 3275.
[16] J. Forniés, C. Fortuño, R. Navarro, F. Martínez and A.J. Welch, J. Organomet. Chem., 394 (1990) 643.
[17] J.B. Brandon and K.R. Dixon, Can. J. Chem., 59 (1981) 1188.
[18] R. Usón, J. Forniés, P. Espinet, R. Navarro and C. Fortuño, J. Chem. Soc., Dalton Trans., (1987) 2077.
[19] G. Peters, J. Am. Chem. Soc., 82 (1960) 4751.
[20] G.M. Sheldrick, SHELXT-PLUS, Software Package for the Determination of Crystal Structure, Release 4.0, Siemens Analytical X-Ray Instruments, Madison, WI, 1990.

[^0]: - Corresponding author.

[^1]: Complex 8 was too insoluble for NMR measurements. Complex 16 had all resonances overlapping. OR, overlapping resonances; BR; broad resonance; NR, not resolved.
 ${ }^{\mathrm{C}} \mathrm{H}$-acac. 86 Hz .
 ${ }^{\text {c }}{ }^{3} J_{\mathrm{Pt}-\mathrm{H}}=28.96 \mathrm{~Hz}$.
 ${ }^{\mathrm{g}} \mathrm{PhS}(\mathrm{h})^{1} J_{\mathrm{P}-\mathrm{H}}=356.74 \mathrm{~Hz}$.
 ${ }^{\mathrm{i}} 7.0-7.2 \mathrm{ppm} \mathrm{P} h_{2}$.

